The ontogeny of inhibition and excitation in the gerbil lateral superior olive.

نویسندگان

  • D H Sanes
  • E W Rubel
چکیده

While the development of excitatory responses has been the focus of considerable research, the ontogeny of inhibitory connections has received relatively little attention. The lateral superior olive (LSO), an auditory nucleus in the ventral brain stem, is a favorable system in which to compare the maturation of an inhibitory and an excitatory input. Neurons in the LSO are excited by stimuli delivered to the ipsilateral ear and inhibited by similar stimuli to the contralateral ear. Single-neuron recordings were made to characterize tone-evoked responses at the onset of hearing and in adult Mongolian gerbils. The results indicated that frequency selectivity was significantly poorer in young than adult animals. In several cases, neurons within the same animal were found to have disparate tuning properties, such that one of the units had "adult-like" tuning, while the other was much more broadly tuned. No difference existed between excitatory and inhibitory tuning within any age group. The degree to which the excitatory and inhibitory characteristic frequencies of an LSO neuron were correlated was used as a measure of tonotopic map alignment. A significant improvement of matching was seen with increasing age. A comparison of excitatory and inhibitory thresholds indicated that the inhibitory system was relatively more efficacious in young than adult animals. The ability of LSO neurons to respond to interaural intensity differences, the binaural parameter to which they are sensitive, indicated 3 differences between adult and young animals: the dynamic range was smaller, the slope was shallower, and the sample of neurons encoded a constrained range of interaural intensity difference values. We conclude that the maturation of the inhibitory and excitatory systems are nearly identical.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Frequency-dependent interaural delays in the medial superior olive: implications for interaural cochlear delays.

Neurons in the medial superior olive (MSO) are tuned to the interaural time difference (ITD) of sound arriving at the two ears. MSO neurons evoke a strongest response at their best delay (BD), at which the internal delay between bilateral inputs to MSO matches the external ITD. We performed extracellular recordings in the superior olivary complex of the anesthetized gerbil and found a majority ...

متن کامل

A Mechanistic Understanding of the Role of Feedforward Inhibition in the Mammalian Sound Localization Circuitry

Feedforward inhibition sharpens the precision of neurons throughout ascending auditory pathways, including the binaural neurons of the medial superior olive (MSO). However, the biophysical influence of inhibition is poorly understood, particularly at higher frequencies at which the relative phase of inhibition and excitation becomes ambiguous. Here, we show in gerbil MSO principal cells in vitr...

متن کامل

Binaural response properties of low-frequency neurons in the gerbil dorsal nucleus of the lateral lemniscus.

Differences in intensity and arrival time of sounds at the two ears, interaural intensity and time differences (IID, ITD), are the chief cues for sound localization. Both cues are initially processed in the superior olivary complex (SOC), which projects to the dorsal nucleus of the lateral lemniscus (DNLL) and the auditory midbrain. Here we present basic response properties of low-frequency (< ...

متن کامل

Title: Binaural Response Properties of Low Frequency Neurons in the Gerbil Dorsal Nucleus of the Lateral Lemniscus Authors:

Differences in intensity and arrival time of sounds at the two ears, interaural intensity and time differences (IID, ITD), are the chief cues for sound localization. Both cues are initially processed in the superior olivary complex (SOC) which projects to the dorsal nucleus of the lateral lemniscus (DNLL) and the auditory midbrain. Here we present basic response properties of low frequency (<2 ...

متن کامل

Glycinergic inhibition tunes coincidence detection in the auditory brainstem

Neurons in the medial superior olive (MSO) detect microsecond differences in the arrival time of sounds between the ears (interaural time differences or ITDs), a crucial binaural cue for sound localization. Synaptic inhibition has been implicated in tuning ITD sensitivity, but the cellular mechanisms underlying its influence on coincidence detection are debated. Here we determine the impact of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 8 2  شماره 

صفحات  -

تاریخ انتشار 1988